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I About

LEARN KDB+

nigh-performance database

- High-Performance time-series database for real-time/historic market data

- g language: query, transform, analyze data on KDB+
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I About

End Goal:

- Building an observability platform for KDB+

- Collect various metrics such as system metrics, market data metrics, historic metrics

- Visualize them real-time via dashboards
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I Summary

1. Project Overview

2. Setting up KDB+ Database
3. Capturing Metrics

4. Visualizing Metrics

5. The Product

6. Reflections
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Project Overview
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I Project Milestones

1. Set up KDB+ databases to capture metrics

2. Collect various metrics and store them into database
- System metrics, market data metrics, etc.

3. Connect metrics database to dashboard for visualization
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I Basic Architecture of KDB+ systems

Data Feed FEED
esied ; HANDLER

el
TICKER
PLANT
- P
REAL-TIME | .., | HISTORICAL
DATABASE DATABASE
\———/ \.h_—/

- Individual processes written in the q language
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I Architecture of the Observability Platform

Metric Collector A

Dashboard
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Metric

Collector B
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Setting up KDB+ databases
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I Setting up KDB+ Databases to Store Metrics

- To-Do: Define schema to store metrics

Existing
Code
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I Setting up KDB+ database schema

Defining schema for database:

metrics:([]
time: timestamp%();
sym: g#t"$(); J/name of the metric

service: $();

hostname: $();

val:(); // Value of the metric
metaData: ());

Sample Record:

2025.08.28D04:41:15.4683563633
“sar.cpu.kidle
“sar

- Allow queries by metric name

“tsdpl359.equity.local
o7.87
"meta”
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Collecting Various Metrics
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I Different Levels of Metrics

- System metrics
- CPU usage, mem usage, disk I/O

- Market data metrics
- Table growth, pipeline latencies

- KDB+ in-process metrics
- # of queries processed by KDB+ database

- Historic Metrics
- HDB storage sizes
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Collecting system metrics

WolZ.BHHDZ L,

Share the Future

o smpCEmsE%



I SAR — System Activity Report

[mizumi@tsdpl359 bitbucket]$ sar -u 1
Linux 4.18.8-553.47.1.el18 10.x86 64 (tsdpl359.equity.local)

01:36:29 PM CPU suser #wnice  Asystem  Hiowait
01:36:36 PM
01:36:31 PM
81: 12 PM
e1: 33 PM
81: 34 PM
01:36:35 PM
01:36:326 PM

- Command-Line Linux Monitoring Tool

- Reports CPU, mem, disk I/O

- Contains stats over time

08/28/2025

%steal

#xidle

_x86_b4

(64 CPU)
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I Creating Real-Time Sar Metrics Collector

[mizumi@tsdpl359 bitbucket]$ sar -u 1
Linux 4.18.0-553.47.1.e18 10.x86 64 (tsdpl359.equity.local) 08/28/2025 _x86_64 (64 CPU)

%user %nice  Msystem %iowait %steal %idle

System Metrics Metrics Datg
Collector \
——

TICKER
PLANT »

2025.08.28004:41:15.483563633

“sar.cpu.kidle
" sar
“tsdpl359.equity.local
P o]

97.87

"meta” REAL-TIME
DATABASE

HISTORICAL

e DATABASE

N o
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Collecting Market Data Metrics
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I Market Data Metrics: Pipeline Latency

Pipeline Latency: time between feed handler and ticker plant

RFA_RDB

recvlime time
TSE Feedhandler TSE Tickerplant
OSA Feedhandler OSA Tickerplant
JNO Feedhandler JNO Tickerplant

Tsdpl369 Tsdpl359
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I Market Data Metrics: Pipeline Latency

Latency Metrics

Collector
recviime :
time é§\
o
TSE Feedhandler . i TSE Tickerplant
Metrics
Data
OSA Feadhandler 1 OSA Tickerplant RFA_RDB

R

TICKER ’l
JNO Feedhandler B " JNO Tickerplant PLANY .

Tsdpl369 Tsdpi359 I
P

REAL-TIME
DATABASE

HISTORICAL

R DATABASE

N —
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I Resulting Market Data Metrics per Market

Summarizing per market is less expensive than per instrument — less memory allocations

g)).net.run["rdb_rfa 1 p.1";{select val: "long$ time - recviime by marketID from rfaQuote where time > .z.
P - 90:01}]

090534 70642 71323 72232 69068 71945 68783 91862 72087 89986 90397 8..
496745 308938 171392 412755 977692 479701 A86884 147752 A38382 1793..
275000 107000 134000 138000 264000 117000 147000 99000 276000 96000. .

o sMBCEmES



Computing Latencies: p50, p90, p95, p99

bitbucket > observability > core > code > £ quote latency.q
process: {

latencies: asc latencies;

i: (floor len*8.5) - 1;

p5@: latencies[i];

data: (.z.p;.Q.dd/[ rdbs.rfa.tables.rfaQuote,sym,” latency p50]; tradeCount;.z.h;p50;"meta");
send [ metrics;data]l;

i: (floor len*9.90) - 1;

p9@: latencies[i];

data: (.z.p;.Q.dd/[ rdbs.rfa.tables.rfaQuote,sym,” latency p9@]; tradeCount;.z.h;p99;"meta");
send [ metrics;data];

i: (floor len®*8.95) - 1;

p95: latencies[1];

data: (.z.p;.Q.dd/[ rdbs.rfa.tables.rfaQuote,sym,” latency p95]; tradeCount;.z.h;p95;"meta");
send [ "metrics;data];

i: (floor len*@.99) - 1;

p99: latencies[i];

data: (.z.p;.Q.dd/[ rdbs.rfa.tables.rfaQuote,sym,” latency p99]; tradeCount;.z.h;p99;"meta");
send [ metrics;data]l;

z.ts: {
rows: value each 0! .net.run["rdb_rfa 1 p.1";{select val: " long$ time - recvliime by sym from rfaQuote where time > .z.P - @0:01 }];

process each rows;
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I Visualization will come later!
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Collecting KDB+’s In-Process Metrics
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I In-process metrics of KDB+ processes

Motivation:

- Collect query info from KDB+ processes
- Monitor load on KDB+ processes realtime

- Ability to cross-reference queries against system metrics in dashboard

User Queries | {5 Table view @ < (D 2025-08-2815:23:43 10 2025-08-28 15:24:30 ~ > @ 3 Refrest

Queue Size tickerplant

0 il \

15:23:45 15:23:50 15:23:5 2025-08-28 15:23:53 - 2025-08-28 15:24:13 & @& 15:24:15 15:24:20 15:24:25 1

. _ ) Ml
B Queries 1 v4 Transformations ' 0

User: Query: {system"sleep 20
[ e

Data source (;l tsdpl368 v | > Query options  MD = auto = 1250 Interval = 50ms Query inspectc
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I Accessing Query-logs of KDB+ Processes

g)gquery_info: .net.run["rdb rfa 1 p.1";{first .p.querylog}]

q)query_info

time | 2625 088 _26T12:35:17.866

user | ~deltacomponent

query | "{[x;h;a;p;pd] if[ updchpid in key ~.ch; .[.ch.updchpid;(x;h;a;p;pd);::11;

#5911 ]"

success | 1b

exectime | 0i

querytype| ~sync

ip | "0.0.0.0

status | “executed

memory | "122564640 201326592 201326592 0 0 1622467604480

error | ="

handle |
|

process

111

- KDB+ processes in our system maintain a querylog(]

- Can generate metrics such as query timespans, query size

o sMBCEmES



I Accessing Query-logs of KDB+ Processes

Retrieve Query-Metrics

Real-time KDB+ Process
Database Metrics Collector
&
@@
GRS
o - -
TICKER » ‘ =
PLANT ‘
, Real-Time Metrics
- Query-Metrics sent to :I
dashboards’s built-in Dashboard
SQL database
e
REALTIME  fvrcon..p| iSTORICAL
N
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Connecting to Dashboard for Visualization
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I Why Grafana?

- Rich visualizations — heatmaps, gauges

- Alert rules through a Symphony integration

Grafana
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I Connecting Metrics to Dashboard:

Using KDB+ plug-ins on Grafana...

rdb-metrics

Type: kdb+
{4 Settings
Name @ | rdb-metrics Default
Host localhost
Port 43703
Username configured Reset
Password Password
Timeout (ms) 20000

TLS Client Auth L ]

Version: 1.0.0

Metric Collector A

Dashboard

Metric Collector B

TICKER
PLANT

REAL-TIME
DATABASE

HISTORICAL
DATABASE
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I Time-series Visualization!

‘ sar_metrics | sar.io.tps v \ ‘ Host‘ tsdpl4d42 x X v 88 Overview l ‘ < 1 @ Last 15 minutes v | > I CHER ) Reffeshl v ‘
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I Using Variable Features on Grafana

Drop-down list of interested metrics

sar_metrics | sar.cpu.%idle Q Host tsdpl368 % v

sar.cpu.CPU -
SAR-1O-rtg
sar.cpu.user
4200 .
sar.cpu.%nice
4000
sar.cpu.%system
3800
3600 sar.cpu.iowait
3400 sar.cpu.%steal
3z00 sar.cpu.%idle
3000
sar.mem.kbmemfree .
2800
2600
2400
2200
2000
1800
1600
1400

Metrics shown are queried from metrics RDB

Query
Query select distinct sym from metrics where sym like "*sar*"
Timeout 5000
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Inspecting Different Hosts on Dashboards

Entire stack running on different hosts — each hosts store smaller subset of data; queries will run faster

Grafana can parallelize queries on different host — scalable as we add new hosts — longer term we can extend to
prod environment

sar_metrics | sar.cpu.%%user v H EEREEE «  GREEE % EREEE < X v Successful User Login | @ Failed User Login | @ < (@ Last30 minutes ~ > & O Refresh ~
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Example Dashboards
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Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Tickerplant queue size for detecting long queries with real-time database

User Queries | i@ Table view @ ¢« (O 2025-08-28 15:23:43 to 2025-08-28 15:24:30 Q ) Refresh ~
Queue Size tickerplant
250
2025-08-28 15:24:09
200
- val 254
150
100
50
0
15:23:45 15:23:50 15:23:55 15:24:00 15:24:05 15:24:10 15:24:15 15:24:20 15:24:25 15:24:3
B Queries 1 w4 Transformations 0 & Alert ‘0
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I Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Data Feed >

FEED
HANDLER

s,

TICKER
PLANT

o ———

-

.

REAL-TIME
DATABASE

—]

N

1 3 n-EOD-.»

e

HISTORICAL
DATABASE
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I Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

User Queries Table view @ ¢« (O 2025-08-28 15:23:43 to 2025-08-28 15:24:30 ~ > Q& 3 Refrest

Queue Size tickerplant

0
1
1
250 i
1
1
1
1
200 :
1
1
1
150 :
1
1
1
1
100 .
1
1
1
50 :
1
1
1 ni
1 ni
D L nl
15:23:45 15:23:50 15235 5005_08-28 15:23:53 - 2025-08-28 15:24:13 2 15:24:15 15:24:20 15:24:25 1
User: Query: {system"sleep 20"}’
B Queries 1 v Transformations - - .
Liser | erected | uory
Data source | () tsdpl368 v ["® > Queryoptions MD=auto=1250 Interval = 50ms Query inspectc
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Use Case #2: Visualizing growth of HDB

Breakdown of historical data to aid decisions in storage management

Home » Dashboards > Historical Data > HDB Overview > View panel Q Search ctrisk | 4 v @
¢ Backtodashboard = Export v

Hostname O | All ~ ¢ @ LastSyears v > @ i Cancel -
Daily HDB Size (Uncompressed) ® &

340 68
32068
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24068
22068
Tg 20068
@
S 1s008
g
S 16068
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12068
10068
80 6B
60GB
40GB Y - mi}"w
L™ - . e, .F' ‘

.

< . . Sase

- L e o
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« ®

20 GB

0B
2020-11 2021-02 2021-05 2021-08 2021-11 2022-02 2022-05 2022-08 2022-11 2023-02 2023-05 2023-08 2023-11 2024-02 2024-05 2024-08 2024-11 2025-02 2025-05 2025-08

- Keep track of market data and growth overtime
- Which market data is taking up the most space
- Predict trends of how much storage will be needed
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System Performance Dashboard

sar_metrics | sar.io.rtps v Host
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I This is a Slow Query

a)
q).net.run["hdb rfa 1 p.1";{select from rfaQuote where sym like "*a*", date > 2024.01.01}]

This is much faster:

q)
q)

q).net.run["hdb rfa 1 p.1";{select from rfaQuote where date > 2024.01.01, sym like "*a*"}]
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I Latency Dashboards

[Roa Y j| semngs | et

Markets

TSE ~ | | Successful User Login | @ | | Failed User Login

[ 2B | | Failed Query | [ 2 | | Successful User Query | [ | <« (@ Last2hours ~ > @ 3 Refresh ~

p99 Latency by Market p99 Latency by Market
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I Reflections

What | achieved:

- Built an observability stack on KDB+ architecture
- Metrics collector in q
- Interactive dashboard for real-time visualization

What | learned:

- Debugging through linux processes
- kdb+, q
- Learned q, database maintenances (backfilling databases)
- Observability concepts
- debugging skills!!!
- Very different experience from TypeScript
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Thank You for Listening!
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Questions?
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