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- High-Performance time-series database for real-time/historic market data

- q language: query, transform, analyze data on KDB+



About 
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End Goal: 

- Building an observability platform for KDB+

- Collect various metrics such as system metrics, market data metrics, historic metrics

- Visualize them real-time via dashboards
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1. Project Overview

2. Setting up KDB+ Database

3. Capturing Metrics

4. Visualizing Metrics

5. The Product

6. Reflections



Project Overview



Project Milestones
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1. Set up KDB+ databases to capture metrics

2. Collect various metrics and store them into database
- System metrics, market data metrics, etc.

3.  Connect metrics database to dashboard for visualization



Basic Architecture of KDB+ systems

- Individual processes written in the q language



Architecture of the Observability Platform

Metric Collector A Metric Collector B

Dashboard



Setting up KDB+ databases



Setting up KDB+ Databases to Store Metrics

Existing 

Code

- To-Do: Define schema to store metrics



Setting up KDB+ database schema

Defining schema for database:

Sample Record:

- Allow queries by metric name



Collecting Various Metrics



Different Levels of Metrics

- System metrics

- CPU usage, mem usage, disk I/O

- Market data metrics

- Table growth, pipeline latencies

- KDB+ in-process metrics

- # of queries processed by KDB+ database

- Historic Metrics

- HDB storage sizes



Collecting system metrics



SAR – System Activity Report

- Command-Line Linux Monitoring Tool

- Reports CPU, mem, disk I/O

- Contains stats over time



Creating Real-Time Sar Metrics Collector

System Metrics   

Collector



Collecting Market Data Metrics



Market Data Metrics: Pipeline Latency

Pipeline Latency: time between feed handler and ticker plant

TSE Tickerplant

OSA Tickerplant

JNO Tickerplant

RFA_RDB

JNO Feedhandler

OSA Feedhandler

TSE Feedhandler

recvTime time

Tsdpl369 Tsdpl359



Market Data Metrics: Pipeline Latency

Latency Metrics 

Collector

Metrics 

Data



Resulting Market Data Metrics per Market

Summarizing per market is less expensive than per instrument – less memory allocations 



Computing Latencies: p50, p90, p95, p99



Visualization will come later!



Collecting KDB+’s In-Process Metrics



In-process metrics of KDB+ processes

Motivation: 

- Collect query info from KDB+ processes

- Monitor load on KDB+ processes realtime

- Ability to cross-reference queries against system metrics in dashboard



Accessing Query-logs of KDB+ Processes

- KDB+ processes in our system maintain a querylog[]

- Can generate metrics such as query timespans, query size



Accessing Query-logs of KDB+ Processes

KDB+ Process 

Metrics Collector

Real-time              

Database

Dashboard
Real-Time Metrics

Retrieve Query-Metrics

- Query-Metrics sent to  

dashboards’s built-in 
SQL database



Connecting to Dashboard for Visualization



Why Grafana?

- Rich visualizations – heatmaps, gauges

- Alert rules through a Symphony integration



Connecting Metrics to Dashboard:

Using KDB+ plug-ins on Grafana…



Time-series Visualization!



Using Variable Features on Grafana

Drop-down list of interested metrics

Metrics shown are queried from metrics RDB



Inspecting Different Hosts on Dashboards

Entire stack running on different hosts – each hosts store smaller subset of data; queries will run faster 

Grafana can parallelize queries on different host – scalable as we add new hosts – longer term we can extend to 
prod environment



Example Dashboards



Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Tickerplant queue size for detecting long queries with real-time database



Use Case #1: Inspect Busy Processes by Tickerplant Queue Size



Use Case #1: Inspect Busy Processes by Tickerplant Queue Size



Use Case #2: Visualizing growth of HDB

- Keep track of market data and growth overtime

- Which market data is taking up the most space

- Predict trends of how much storage will be needed

Breakdown of historical data to aid decisions in storage management



System Performance Dashboard



This is a Slow Query

This is much faster:



Latency Dashboards



Reflections

What I achieved:

  - Built an observability stack on KDB+ architecture

- Metrics collector in q

- Interactive dashboard for  real-time visualization

What I learned:

- Debugging through linux processes

- kdb+, q

- Learned q, database maintenances (backfilling databases) 

- Observability concepts

- debugging skills!!!

- Very different experience from TypeScript



Thank You for Listening!



Questions?
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