Observability Platform for KDB+

SMBCHEGEFHA =+t
Equity System Development &f
Marcus lzumi

2025508 A27H

WolZ.BHHDZ L,

Share the Future

! smpcEmIES

I About

LEARN KDB+

nigh-performance database

- High-Performance time-series database for real-time/historic market data

- g language: query, transform, analyze data on KDB+

o sMpCEmES

I About

End Goal:

- Building an observability platform for KDB+

- Collect various metrics such as system metrics, market data metrics, historic metrics

- Visualize them real-time via dashboards

Host | tsdpl359 ~

83 Alerts ‘

83 Historical Data ‘

82 KDB Metrics ‘

88 sSystem Metrics ‘

82 BLAST Overview ‘

85 HDB Overview ‘

83 HDB-Storage ‘

88 Proc Mem Metrics

B8 sar Metrics | | B8 Tickerplants

Overall CPU Usage Overall Memory Us... Disk Usage: [datal

a‘ 65%

—2.66% 471 GB

SAR - 10 - Read Transactions Per Second (rtps)

)

Oor

3000
2000 = — — — — — — — — B e SR o e
1000 I
0 J|I h | L L s n n
15:00 16:00 17:00 18:00 19:00 20:00
SAR - Paging - Faults
800
600
400
200 J
o il .
15:00 16:00 17:00 18:00 19:00 20:00

Disk Usage: /data2

B‘ 88% .

e
]
(=)

Disk Usage: /data3

B‘ 50%

SAR - 10 - Write Transactions Per Second (wtps)

Disk Usage: /datad

)
)
B

o
~
X
r

1250
1000
750
500
250
0

15:00

16:00 17:00 18:00 19:00 20:00

SAR - CPU - Load Avg

bl o i

15:00 16:00
== A1 MinLoad Average

(= LR e <]

17:00 18:00 19:00 20:00

B 5 Min Load Average == C 15 Min Load Average

[

Disk Usage: /data5

87%

=]

- Latency‘ ¢ (@ LastBhours ~ > @) Refresh ~

58

OOI-

Disk Usage: [dataA...

g8

73%

T

(=]

O

I Summary

1. Project Overview

2. Setting up KDB+ Database
3. Capturing Metrics

4. Visualizing Metrics

5. The Product

6. Reflections

o sMBCEmES

Project Overview

WolZ.BHHDZ L,

Share the Future

o smBcEmEE

I Project Milestones

1. Set up KDB+ databases to capture metrics

2. Collect various metrics and store them into database
- System metrics, market data metrics, etc.

3. Connect metrics database to dashboard for visualization

o sMBCEmES

I Basic Architecture of KDB+ systems

Data Feed FEED
esied ; HANDLER

el
TICKER
PLANT
- P
REAL-TIME | .., | HISTORICAL
DATABASE DATABASE
\———/ \.h_—/

- Individual processes written in the q language

o sMpCEmES

I Architecture of the Observability Platform

Metric Collector A

Dashboard

Query

Metric

Collector B

TICKER
PLANT

-

i ——unal

REAL-TIME
DATABASE

n---EOD--’

. FR——

HISTORICAL
DATABASE

, TOR——

o sMpCEmES

Setting up KDB+ databases

WolZ.BHHDZ L,

Share the Future

o smBcEmEE

I Setting up KDB+ Databases to Store Metrics

- To-Do: Define schema to store metrics

Existing
Code

J

TICKER ‘ P
PLANT | T
-—

REAL-TIME
DATABASE

beees EOD ..>

HISTORICAL
DATABASE

. TO———

, Coe———

o sMpCEmES

I Setting up KDB+ database schema

Defining schema for database:

metrics:([]
time: timestamp%();
sym: g#t"$(); J/name of the metric

service: $();

hostname: $();

val:(); // Value of the metric
metaData: ());

Sample Record:

2025.08.28D04:41:15.4683563633
“sar.cpu.kidle
“sar

- Allow queries by metric name

“tsdpl359.equity.local
o7.87
"meta”

o sMBCEmES

Collecting Various Metrics

WolZ.BHHDZ L,

Share the Future

o smpCEmsE%

I Different Levels of Metrics

- System metrics
- CPU usage, mem usage, disk I/O

- Market data metrics
- Table growth, pipeline latencies

- KDB+ in-process metrics
- # of queries processed by KDB+ database

- Historic Metrics
- HDB storage sizes

o sMBCEmES

Collecting system metrics

WolZ.BHHDZ L,

Share the Future

o smpCEmsE%

I SAR — System Activity Report

[mizumi@tsdpl359 bitbucket]$ sar -u 1
Linux 4.18.8-553.47.1.el18 10.x86 64 (tsdpl359.equity.local)

01:36:29 PM CPU suser #wnice Asystem Hiowait
01:36:36 PM
01:36:31 PM
81: 12 PM
e1: 33 PM
81: 34 PM
01:36:35 PM
01:36:326 PM

- Command-Line Linux Monitoring Tool

- Reports CPU, mem, disk I/O

- Contains stats over time

08/28/2025

%steal

#xidle

_x86_b4

(64 CPU)

o sMBCEmES

I Creating Real-Time Sar Metrics Collector

[mizumi@tsdpl359 bitbucket]$ sar -u 1
Linux 4.18.0-553.47.1.e18 10.x86 64 (tsdpl359.equity.local) 08/28/2025 _x86_64 (64 CPU)

%user %nice Msystem %iowait %steal %idle

System Metrics Metrics Datg
Collector \
——

TICKER
PLANT »

2025.08.28004:41:15.483563633

“sar.cpu.kidle
" sar
“tsdpl359.equity.local
P o]

97.87

"meta” REAL-TIME
DATABASE

HISTORICAL

e DATABASE

N o

o sMBCEmES

Collecting Market Data Metrics

WolZ.BHHDZ L,

Share the Future

o smpCEmsE%

I Market Data Metrics: Pipeline Latency

Pipeline Latency: time between feed handler and ticker plant

RFA_RDB

recvlime time
TSE Feedhandler TSE Tickerplant
OSA Feedhandler OSA Tickerplant
JNO Feedhandler JNO Tickerplant

Tsdpl369 Tsdpl359

o sMBCEmES

I Market Data Metrics: Pipeline Latency

Latency Metrics

Collector
recviime :
time é§\
o
TSE Feedhandler . i TSE Tickerplant
Metrics
Data
OSA Feadhandler 1 OSA Tickerplant RFA_RDB

R

TICKER ’l
JNO Feedhandler B " JNO Tickerplant PLANY .

Tsdpl369 Tsdpi359 I
P

REAL-TIME
DATABASE

HISTORICAL

R DATABASE

N —

o sMBCEmES

I Resulting Market Data Metrics per Market

Summarizing per market is less expensive than per instrument — less memory allocations

g)).net.run["rdb_rfa 1 p.1";{select val: "long$ time - recviime by marketID from rfaQuote where time > .z.
P - 90:01}]

090534 70642 71323 72232 69068 71945 68783 91862 72087 89986 90397 8..
496745 308938 171392 412755 977692 479701 A86884 147752 A38382 1793..
275000 107000 134000 138000 264000 117000 147000 99000 276000 96000. .

o sMBCEmES

Computing Latencies: p50, p90, p95, p99

bitbucket > observability > core > code > £ quote latency.q
process: {

latencies: asc latencies;

i: (floor len*8.5) - 1;

p5@: latencies[i];

data: (.z.p;.Q.dd/[rdbs.rfa.tables.rfaQuote,sym,” latency p50]; tradeCount;.z.h;p50;"meta");
send [metrics;data]l;

i: (floor len*9.90) - 1;

p9@: latencies[i];

data: (.z.p;.Q.dd/[rdbs.rfa.tables.rfaQuote,sym,” latency p9@]; tradeCount;.z.h;p99;"meta");
send [metrics;data];

i: (floor len®*8.95) - 1;

p95: latencies[1];

data: (.z.p;.Q.dd/[rdbs.rfa.tables.rfaQuote,sym,” latency p95]; tradeCount;.z.h;p95;"meta");
send ["metrics;data];

i: (floor len*@.99) - 1;

p99: latencies[i];

data: (.z.p;.Q.dd/[rdbs.rfa.tables.rfaQuote,sym,” latency p99]; tradeCount;.z.h;p99;"meta");
send [metrics;data]l;

z.ts: {
rows: value each 0! .net.run["rdb_rfa 1 p.1";{select val: " long$ time - recvliime by sym from rfaQuote where time > .z.P - @0:01 }];

process each rows;

o sMBCEmES

I Visualization will come later!

o sMBCEmES

Collecting KDB+’s In-Process Metrics

WolZ.BHHDZ L,

Share the Future

o smpcEmIES

I In-process metrics of KDB+ processes

Motivation:

- Collect query info from KDB+ processes
- Monitor load on KDB+ processes realtime

- Ability to cross-reference queries against system metrics in dashboard

User Queries | {5 Table view @ < (D 2025-08-2815:23:43 10 2025-08-28 15:24:30 ~ > @ 3 Refrest

Queue Size tickerplant

0 il \

15:23:45 15:23:50 15:23:5 2025-08-28 15:23:53 - 2025-08-28 15:24:13 & @& 15:24:15 15:24:20 15:24:25 1

. _) Ml
B Queries 1 v4 Transformations ' 0

User: Query: {system"sleep 20
[e

Data source (;l tsdpl368 v | > Query options MD = auto = 1250 Interval = 50ms Query inspectc

o sMpCEmES

I Accessing Query-logs of KDB+ Processes

g)gquery_info: .net.run["rdb rfa 1 p.1";{first .p.querylog}]

q)query_info

time | 2625 088 _26T12:35:17.866

user | ~deltacomponent

query | "{[x;h;a;p;pd] if[updchpid in key ~.ch; .[.ch.updchpid;(x;h;a;p;pd);::11;

#5911]"

success | 1b

exectime | 0i

querytype| ~sync

ip | "0.0.0.0

status | “executed

memory | "122564640 201326592 201326592 0 0 1622467604480

error | ="

handle |
|

process

111

- KDB+ processes in our system maintain a querylog(]

- Can generate metrics such as query timespans, query size

o sMBCEmES

I Accessing Query-logs of KDB+ Processes

Retrieve Query-Metrics

Real-time KDB+ Process
Database Metrics Collector
&
@@
GRS
o - -
TICKER » ‘ =
PLANT ‘
, Real-Time Metrics
- Query-Metrics sent to :I
dashboards’s built-in Dashboard
SQL database
e
REALTIME fvrcon..p| iSTORICAL
N

o sMpCEmES

Connecting to Dashboard for Visualization

WolZ.BHHDZ L,

Share the Future

! smpcEmIES

I Why Grafana?

- Rich visualizations — heatmaps, gauges

- Alert rules through a Symphony integration

Grafana

o sMpCEmES

I Connecting Metrics to Dashboard:

Using KDB+ plug-ins on Grafana...

rdb-metrics

Type: kdb+
{4 Settings
Name @ | rdb-metrics Default
Host localhost
Port 43703
Username configured Reset
Password Password
Timeout (ms) 20000

TLS Client Auth L]

Version: 1.0.0

Metric Collector A

Dashboard

Metric Collector B

TICKER
PLANT

REAL-TIME
DATABASE

HISTORICAL
DATABASE

o sMpCEmES

I Time-series Visualization!

‘ sar_metrics | sar.io.tps v \ ‘ Host‘ tsdpl4d42 x X v 88 Overview l ‘ < 1 @ Last 15 minutes v | > I CHER) Reffeshl v ‘

44
42
40
38
36
34

...

32

30

28

26

24

22

20

18

16

14

12

10

| l“_m il h | h b

10:30:00 10:31:00 10:32:00 10:33:00 10:34:00 10:35:00 10:36:00 10:37:00 10:38:00 10:39:00 10:40:00 10:41:00 10:42:00 10:43:00 10:44:00
== tsdpl442.equity.local

o sMpCEmES

I Using Variable Features on Grafana

Drop-down list of interested metrics

sar_metrics | sar.cpu.%idle Q Host tsdpl368 % v

sar.cpu.CPU -
SAR-1O-rtg
sar.cpu.user
4200 .
sar.cpu.%nice
4000
sar.cpu.%system
3800
3600 sar.cpu.iowait
3400 sar.cpu.%steal
3z00 sar.cpu.%idle
3000
sar.mem.kbmemfree .
2800
2600
2400
2200
2000
1800
1600
1400

Metrics shown are queried from metrics RDB

Query
Query select distinct sym from metrics where sym like "*sar*"
Timeout 5000

o sMpCEmES

Inspecting Different Hosts on Dashboards

Entire stack running on different hosts — each hosts store smaller subset of data; queries will run faster

Grafana can parallelize queries on different host — scalable as we add new hosts — longer term we can extend to
prod environment

sar_metrics | sar.cpu.%%user v H EEREEE « GREEE % EREEE < X v Successful User Login | @ Failed User Login | @ < (@ Last30 minutes ~ > & O Refresh ~

Successful Query Failes User Query | @

SAR-10-rtps

14
13
12
11

10

koo e o oo

| |
i i | I I | | | II ! |1 “ | | ‘ ||I‘H I||I |
2 | i | ol f | hl LR (i ‘ \ - || ‘L Torh s 1 IL LM
| L .II{;H HI 1 1 | r_.J‘ 'w__‘_fi l-‘."’ " 1"‘:"-’. 1J.I;-.-‘I*;‘__I=I|l+l_r:f‘|‘-_;.:‘l \". | b LIH kL .-Lll'|'=.":‘.-1-\ |1I!_.1‘| A !'.'I”"I‘-"I"'L _‘\Ii |‘ :"I. ,-‘~__‘.":1r|'| L/ "'I"!.'“J‘ s 4{ 1 v '."’.-";1'-‘1 S];II. _‘,{ .-;:"]'} ¥ f-"'Jl N '“,-'\"-"rq“ \l ”[‘_I_-II .-“ Il‘"ll

(]
! | -
(] (l
N T k MJ T LY LT Y Y 'll J"J‘1|'Jn- | 1[!‘-_,}.&':1 '1. Ll
"*:'I*r"“‘l"l‘“rl-.hf i."lh e -‘quhlU" Wb S g Y by W b U AT Al st
: | | | |
|
| | | | | | | | | | | | | | " | | | | | | | | | . . | | . | |
0 Al J -'I,._. || SRS PO Y (WP N ."\.. t sl | l Nl .L L IENPRY, PSP | I.-l S i lJI l W, { --.I.. | SN YR l ! I. LTS CPPYTY, P, M [IL' Y, e SV ¥ !-n.. YV PR I ‘:r I\-y\lf '\li
13:50 13:55 14:00 14:05 14:10 14:15
= tsdpl359.equity.local 1sdpl442.equity.local == tsdpl446.equity.local

ot
oM Tl

o sMpCEmES

Example Dashboards

WolZ.BHHDZ L,

Share the Future

o smBcEmEE

Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Tickerplant queue size for detecting long queries with real-time database

User Queries | i@ Table view @ ¢« (O 2025-08-28 15:23:43 to 2025-08-28 15:24:30 Q) Refresh ~
Queue Size tickerplant
250
2025-08-28 15:24:09
200
- val 254
150
100
50
0
15:23:45 15:23:50 15:23:55 15:24:00 15:24:05 15:24:10 15:24:15 15:24:20 15:24:25 15:24:3
B Queries 1 w4 Transformations 0 & Alert ‘0

o sMpCEmES

I Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Data Feed >

FEED
HANDLER

s,

TICKER
PLANT

o ———

-

.

REAL-TIME
DATABASE

—]

N

1 3 n-EOD-.»

e

HISTORICAL
DATABASE

o sMpCEmES

I Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

User Queries Table view @ ¢« (O 2025-08-28 15:23:43 to 2025-08-28 15:24:30 ~ > Q& 3 Refrest

Queue Size tickerplant

0
1
1
250 i
1
1
1
1
200 :
1
1
1
150 :
1
1
1
1
100 .
1
1
1
50 :
1
1
1 ni
1 ni
D L nl
15:23:45 15:23:50 15235 5005_08-28 15:23:53 - 2025-08-28 15:24:13 2 15:24:15 15:24:20 15:24:25 1
User: Query: {system"sleep 20"}’
B Queries 1 v Transformations - - .
Liser | erected | uory
Data source | () tsdpl368 v ["® > Queryoptions MD=auto=1250 Interval = 50ms Query inspectc

o sMpCEmES

Use Case #2: Visualizing growth of HDB

Breakdown of historical data to aid decisions in storage management

Home » Dashboards > Historical Data > HDB Overview > View panel Q Search ctrisk | 4 v @
¢ Backtodashboard = Export v

Hostname O | All ~ ¢ @ LastSyears v > @ i Cancel -
Daily HDB Size (Uncompressed) ® &

340 68
32068
300 6B
280 GB
068
24068
22068
Tg 20068
@
S 1s008
g
S 16068
14068
12068
10068
80 6B
60GB
40GB Y - mi}"w
L™ - . e, .F' ‘

.

< . . Sase

- L e o
. . . .

« ®

20 GB

0B
2020-11 2021-02 2021-05 2021-08 2021-11 2022-02 2022-05 2022-08 2022-11 2023-02 2023-05 2023-08 2023-11 2024-02 2024-05 2024-08 2024-11 2025-02 2025-05 2025-08

- Keep track of market data and growth overtime
- Which market data is taking up the most space
- Predict trends of how much storage will be needed

o sMpCEmES

System Performance Dashboard

sar_metrics | sar.io.rtps v Host

SAR-10-rtps

340
320
300
280
260
240
220
200
180
160
140
120
100
80
&0

| | I

0 \l | |

il

20 ‘u'ul‘lllk |"‘ I'Il IlIHNII Hu AN
| |||||||""\"I""||\I|,‘|‘|‘I|||
i

| \
Ollul

15:07:30 15:07:45 15:08:00

= t5dpl359.equity.local

vy i

1sdpl359 x

[(Y |III |||I|| |||| I \III ”l

[e B s

« Back to dashboard

X v Successful Query Failes User Query @ Last5 minutes ~ > -

Q

2 Refresh

Suecessful User Login Failed User Legin

2025-08-28 15:10:33

== tsdpl359.equity.local 314

|| 1 |

| Ihllu\ I IH‘III‘ M‘ \| ‘IIIH‘I ‘IIH ﬁfl i h
Iul ||||

|/
||J\||||II| I NIRRT
15:11:00 15:11:15

f
[) '|II
‘”H \ ||| \|” |\”|I "|‘||‘

uqllm'\' Al AT
15:08:30

| Ni
i l'lf' - |ﬁ| ﬂu bl H‘..‘l" -
'||\'f |

[It I
J \u‘ _RIII‘"'J”“I‘JI‘J'I VT

\I \l I |
15:10:30 15:10:45

I
II'|| ‘IIH' \l'.. [\
||||'H|||'u.‘||‘||

15.09.45

‘ I| |\ | Jllﬁ |||
‘ ||”||I I.\IlllI fi
| |‘ | u' R 'I

“
I IIII
|'.l,|| f
|‘|u||\

.||,.‘

|

| |'
N |4 I\
‘ II |‘|IIH | '|| ”u“ ,ﬁl II
\II\IIH”\ UI\ |

15.10.00 15:10:15

INATRR \\'\MII\ -|||||||L“"

15:11:30

I 1]
u

15:08:15 15 08.45 15:09:00 15:09:15 15.09.30 15:11:45 15:12:00 15:12:

o sMpCEmES

I This is a Slow Query

a)
q).net.run["hdb rfa 1 p.1";{select from rfaQuote where sym like "*a*", date > 2024.01.01}]

This is much faster:

q)
q)

q).net.run["hdb rfa 1 p.1";{select from rfaQuote where date > 2024.01.01, sym like "*a*"}]

o sMBCEmES

I Latency Dashboards

[Roa Y j| semngs | et

Markets

TSE ~ | | Successful User Login | @ | | Failed User Login

[2B | | Failed Query | [2 | | Successful User Query | [| <« (@ Last2hours ~ > @ 3 Refresh ~

p99 Latency by Market p99 Latency by Market

1.03 ms

1ms
800 ps 781 ps
600 ps
400 ps
200 us 98.2 s
ons I

10:18

= JNO == TSE == OSA

1400000

1200000

1000000

800000

600000

400000

200000

0
08:20 08:30 08:40 08:50 09:00 09:10 09:20 09:30 09:40 09:50 10:00 10:10

== latency_p50 val == latency p90 val == latency_p89 val

o sMpCEmES

I Reflections

What | achieved:

- Built an observability stack on KDB+ architecture
- Metrics collector in q
- Interactive dashboard for real-time visualization

What | learned:

- Debugging through linux processes
- kdb+, q
- Learned q, database maintenances (backfilling databases)
- Observability concepts
- debugging skills!!!
- Very different experience from TypeScript

o sMBCEmES

Thank You for Listening!

WolZ.BHHDZ L,

Share the Future

o smBcEmEE

Questions?

WolZ.BHHDZ L,

Share the Future

o smBcEmEE

	既定のセクション
	Slide 1: Observability Platform for KDB+
	Slide 2: About
	Slide 3: About
	Slide 4: Summary
	Slide 5: Project Overview
	Slide 6: Project Milestones
	Slide 7: Basic Architecture of KDB+ systems
	Slide 8: Architecture of the Observability Platform
	Slide 9: Setting up KDB+ databases
	Slide 10: Setting up KDB+ Databases to Store Metrics

	タイトルなしのセクション
	Slide 11: Setting up KDB+ database schema
	Slide 12: Collecting Various Metrics
	Slide 13: Different Levels of Metrics
	Slide 14: Collecting system metrics
	Slide 15: SAR – System Activity Report
	Slide 16: Creating Real-Time Sar Metrics Collector
	Slide 17: Collecting Market Data Metrics
	Slide 18: Market Data Metrics: Pipeline Latency
	Slide 19: Market Data Metrics: Pipeline Latency
	Slide 20: Resulting Market Data Metrics per Market
	Slide 21: Computing Latencies: p50, p90, p95, p99
	Slide 22: Visualization will come later!
	Slide 23: Collecting KDB+’s In-Process Metrics
	Slide 24: In-process metrics of KDB+ processes
	Slide 25: Accessing Query-logs of KDB+ Processes
	Slide 26: Accessing Query-logs of KDB+ Processes
	Slide 27: Connecting to Dashboard for Visualization
	Slide 28: Why Grafana?
	Slide 29: Connecting Metrics to Dashboard:
	Slide 30: Time-series Visualization!
	Slide 31: Using Variable Features on Grafana
	Slide 32: Inspecting Different Hosts on Dashboards
	Slide 33: Example Dashboards
	Slide 34: Use Case #1: Inspect Busy Processes by Tickerplant Queue Size
	Slide 35: Use Case #1: Inspect Busy Processes by Tickerplant Queue Size
	Slide 36: Use Case #1: Inspect Busy Processes by Tickerplant Queue Size
	Slide 37: Use Case #2: Visualizing growth of HDB
	Slide 38: System Performance Dashboard
	Slide 39: This is a Slow Query
	Slide 40: Latency Dashboards

	タイトルなしのセクション
	Slide 41: Reflections
	Slide 42: Thank You for Listening!
	Slide 43: Questions?

