
2025年08月27日

ＳＭＢＣ日興証券株式会社

Equity System Development 部

Observability Platform for KDB+

Marcus Izumi

About

2

- High-Performance time-series database for real-time/historic market data

- q language: query, transform, analyze data on KDB+

About

3

End Goal:

- Building an observability platform for KDB+

- Collect various metrics such as system metrics, market data metrics, historic metrics

- Visualize them real-time via dashboards

Summary

4

1. Project Overview

2. Setting up KDB+ Database

3. Capturing Metrics

4. Visualizing Metrics

5. The Product

6. Reflections

Project Overview

Project Milestones

6

1. Set up KDB+ databases to capture metrics

2. Collect various metrics and store them into database
- System metrics, market data metrics, etc.

3. Connect metrics database to dashboard for visualization

Basic Architecture of KDB+ systems

- Individual processes written in the q language

Architecture of the Observability Platform

Metric Collector A Metric Collector B

Dashboard

Setting up KDB+ databases

Setting up KDB+ Databases to Store Metrics

Existing

Code

- To-Do: Define schema to store metrics

Setting up KDB+ database schema

Defining schema for database:

Sample Record:

- Allow queries by metric name

Collecting Various Metrics

Different Levels of Metrics

- System metrics

- CPU usage, mem usage, disk I/O

- Market data metrics

- Table growth, pipeline latencies

- KDB+ in-process metrics

- # of queries processed by KDB+ database

- Historic Metrics

- HDB storage sizes

Collecting system metrics

SAR – System Activity Report

- Command-Line Linux Monitoring Tool

- Reports CPU, mem, disk I/O

- Contains stats over time

Creating Real-Time Sar Metrics Collector

System Metrics

Collector

Collecting Market Data Metrics

Market Data Metrics: Pipeline Latency

Pipeline Latency: time between feed handler and ticker plant

TSE Tickerplant

OSA Tickerplant

JNO Tickerplant

RFA_RDB

JNO Feedhandler

OSA Feedhandler

TSE Feedhandler

recvTime time

Tsdpl369 Tsdpl359

Market Data Metrics: Pipeline Latency

Latency Metrics

Collector

Metrics

Data

Resulting Market Data Metrics per Market

Summarizing per market is less expensive than per instrument – less memory allocations

Computing Latencies: p50, p90, p95, p99

Visualization will come later!

Collecting KDB+’s In-Process Metrics

In-process metrics of KDB+ processes

Motivation:

- Collect query info from KDB+ processes

- Monitor load on KDB+ processes realtime

- Ability to cross-reference queries against system metrics in dashboard

Accessing Query-logs of KDB+ Processes

- KDB+ processes in our system maintain a querylog[]

- Can generate metrics such as query timespans, query size

Accessing Query-logs of KDB+ Processes

KDB+ Process

Metrics Collector

Real-time

Database

Dashboard
Real-Time Metrics

Retrieve Query-Metrics

- Query-Metrics sent to

dashboards’s built-in
SQL database

Connecting to Dashboard for Visualization

Why Grafana?

- Rich visualizations – heatmaps, gauges

- Alert rules through a Symphony integration

Connecting Metrics to Dashboard:

Using KDB+ plug-ins on Grafana…

Time-series Visualization!

Using Variable Features on Grafana

Drop-down list of interested metrics

Metrics shown are queried from metrics RDB

Inspecting Different Hosts on Dashboards

Entire stack running on different hosts – each hosts store smaller subset of data; queries will run faster

Grafana can parallelize queries on different host – scalable as we add new hosts – longer term we can extend to
prod environment

Example Dashboards

Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Tickerplant queue size for detecting long queries with real-time database

Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Use Case #1: Inspect Busy Processes by Tickerplant Queue Size

Use Case #2: Visualizing growth of HDB

- Keep track of market data and growth overtime

- Which market data is taking up the most space

- Predict trends of how much storage will be needed

Breakdown of historical data to aid decisions in storage management

System Performance Dashboard

This is a Slow Query

This is much faster:

Latency Dashboards

Reflections

What I achieved:

 - Built an observability stack on KDB+ architecture

- Metrics collector in q

- Interactive dashboard for real-time visualization

What I learned:

- Debugging through linux processes

- kdb+, q

- Learned q, database maintenances (backfilling databases)

- Observability concepts

- debugging skills!!!

- Very different experience from TypeScript

Thank You for Listening!

Questions?

	既定のセクション
	Slide 1: Observability Platform for KDB+
	Slide 2: About
	Slide 3: About
	Slide 4: Summary
	Slide 5: Project Overview
	Slide 6: Project Milestones
	Slide 7: Basic Architecture of KDB+ systems
	Slide 8: Architecture of the Observability Platform
	Slide 9: Setting up KDB+ databases
	Slide 10: Setting up KDB+ Databases to Store Metrics

	タイトルなしのセクション
	Slide 11: Setting up KDB+ database schema
	Slide 12: Collecting Various Metrics
	Slide 13: Different Levels of Metrics
	Slide 14: Collecting system metrics
	Slide 15: SAR – System Activity Report
	Slide 16: Creating Real-Time Sar Metrics Collector
	Slide 17: Collecting Market Data Metrics
	Slide 18: Market Data Metrics: Pipeline Latency
	Slide 19: Market Data Metrics: Pipeline Latency
	Slide 20: Resulting Market Data Metrics per Market
	Slide 21: Computing Latencies: p50, p90, p95, p99
	Slide 22: Visualization will come later!
	Slide 23: Collecting KDB+’s In-Process Metrics
	Slide 24: In-process metrics of KDB+ processes
	Slide 25: Accessing Query-logs of KDB+ Processes
	Slide 26: Accessing Query-logs of KDB+ Processes
	Slide 27: Connecting to Dashboard for Visualization
	Slide 28: Why Grafana?
	Slide 29: Connecting Metrics to Dashboard:
	Slide 30: Time-series Visualization!
	Slide 31: Using Variable Features on Grafana
	Slide 32: Inspecting Different Hosts on Dashboards
	Slide 33: Example Dashboards
	Slide 34: Use Case #1: Inspect Busy Processes by Tickerplant Queue Size
	Slide 35: Use Case #1: Inspect Busy Processes by Tickerplant Queue Size
	Slide 36: Use Case #1: Inspect Busy Processes by Tickerplant Queue Size
	Slide 37: Use Case #2: Visualizing growth of HDB
	Slide 38: System Performance Dashboard
	Slide 39: This is a Slow Query
	Slide 40: Latency Dashboards

	タイトルなしのセクション
	Slide 41: Reflections
	Slide 42: Thank You for Listening!
	Slide 43: Questions?

